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Abstract. The recently discovered dynamical diffraction ef-
fect ‘neutron camel’ was used for residual stress measure-
ments in a thick Si (111) crystal coated with a 2000 Å-thick
Ni film. The observed asymmetry of the back-face rocking
curve corresponds to the bending radius of ∼ 19 km and the
tension force applied to the Ni film is ∼ 90 N/m. Relative de-
formation of the Si crystallographic cells in the vicinity of
diffractive surfaces is |∂uz/∂z| ≈ 1.6 ×10−6.

PACS: 62.20.-x; 61.12.Ex; 68.60.-p; 81.15.-z

In the past two decades optical devices, consisting of thin
reflecting layers deposited on silicon or silicon dioxide sub-
strates, have found wide application in light, X-ray and neu-
tron diffraction. A significant surface-induced residual stress,
which usually remains in the films as well as in the substrates
after deposition, creates a serious limitation of the quality of
these devices. The residual stress in crystalline films can be
detected directly by the conventional X-ray-diffraction tech-
nique [1]. There exists another laser-based in situ technique,
the surface-stress-induced optical deflection (SSIOD), which
is capable to detect small deformation strain in substrates dur-
ing the coating process [2]. The back-face neutron diffraction
(BFND) from a perfect Si crystal, as was shown in [3, 4],
is extremely sensitive to ultra-small deformation strain. This
technique detects residual stress in single crystals even when
the relative deformation of crystallographic cells is as small
as ∼ 8 ×10−7, which corresponds to the radius of bending
of ∼ 40 km. The radius of bending can be converted to the
value of deformation of crystallographic cells in the film in
a manner similar to the SSIOD technique [2]; however, on the
contrary, the BFND works for final products. In the present
work we describe the first successful attempt to apply the
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BFND technique for detecting ultra-small residual stress in
a thick Si crystal coated with a thin Ni film.

1 Instruments and samples

The experiments were carried out using the double-crystal
diffractometer at Oak Ridge National Laboratory [5] in the
geometry similar to that described in [3] (see Fig. 1).

The primary beam was diffracted from a Si (111) mosaic
(22′ FWHM) crystal, then from a Si (111) pre-monochroma-
tor (both are not shown in Fig. 1) and finally from a Si (111)
triple-bounce channel-cut monochromator. The wavelength
was λ = 2.59 Å; the beam cross-sectional area was 2 cm×
4 cm. The primary beam was restricted with a fixed vertical
1.8 mm-wide Cd slit and the second scanning 4-mm-wide slit
was mounted directly in front of the detector. In this configu-
ration, the intensity diffracted from different volumes within
the crystal was mapped and the transmitted beam was used as
a monitor signal for determination of the exact Bragg angle,
θB, when the rocking curves were measured for positions
other than the front face of the crystal.

Fig. 1. Geometry of the experiment: 1 is the triple-bounce monochroma-
tor; 2, 4 are the immovable and scanning Cd slits correspondingly; 3 is the
Si (111) slab-shaped crystal coated with a 2000 Å Ni film; 5, 6, 7 are the FF,
garland and BF reflections correspondingly; and 8 is the transmitted beam
used as a monitor signal
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A perfect Si (111) slab-shaped crystal with the dimensions
114 mm × 40 mm × 8.19 mm was cut with the 114 mm×
40 mm diffractive surfaces parallel to the (111) crystallo-
graphic planes for evaluation of the diffraction in the near
vicinity of Bragg reflection. The diffractive surfaces were pol-
ished mechanically, etched and finally polished chemically.
The surface-metrology measurements were carried out using
a WYKO laser profile interferometer. The root mean square
height variation is 1.74 µm with the maximum peak to val-
ley value of 7.88 µm. The front face (FF), back face (BF)
and Garland rocking curves (FFRC, BFRC and GRC) shown
in Fig. 1 were measured after the surface treatment. Then,
one of the diffractive surfaces of the crystal was coated with
a 2000 Å-thick Ni film using a magnetron sputtering tech-
nique, and the neutron-diffraction measurements were under-
taken again.

2 Theoretical background

It is known that in the near vicinity of the exact Bragg angle
neutron waves propagate inside the thick perfect crystal in
the direction parallel to the diffractive surfaces by sequential
reflection from the front and back faces (BF–FF–BF–mode).
When the crystal is lightly deformed, neutron trajectories in-
side the crystal become curved, which leads to the appearance
of a second mode, additional to the BF–FF–BF–mode, of
propagation created by so-called garland reflections [6] only
from the FF (see Fig. 2).

The primary monochromatic beam defined with a nar-
row cadmium slit partly reflects from the FF of the crystal at
X = 0 and the other part penetrates inside and is split by the
BF–FF–BF–mode (see the trajectories 0–4–5 and 0–6–7), and
by the garland mode (the trajectories 0–1, 0–2 and 0–3). The
curved trajectories 0–4–5 and 0–6–7 become straight when
the crystal is not deformed; thus the garland reflections are
eliminated.

Figure 3 clearly shows that the first back-face reflection
measured in our experiment (see the position 7 in Fig. 1)
mostly contains the admixture of one-bounce garland re-
flection (see the peak 1 in Fig. 2), which gives a significant
contribution to the corresponding BFRC. The BF, RBF(y),
and garland, RG(y), reflectivity functions were derived from
the Takagi–Taupin equations [7, 8], which in the case of cylin-
drical deformation can be significantly simplified [3]. Here

Fig. 2. The BF, 0–4–5, 0–6–7, and the garland, 0–1, 0–2, 0–3, trajectories
in the deformed crystal; X1, X2 are the coordinates of the detector win-
dow aligned with respect to the BF-reflected beam and T is the crystal
thickness

Fig. 3. The theoretical BF reflectivity curve numerically calculated for the
deformed crystal with T = 8.19 mm and b ∼ 4×10−4. 1, 2 and 3 are
the diffraction peaks originated by the single-, double- and triple-bounce
garland trajectories correspondingly; 4 are the peaks induced by the BF
reflection, 0–4–5, 0–6–7, trajectories in Fig. 2

y = (θ − θB)/δθD is the dimensionless angular parameter of
the dynamical diffraction theory and δθD is a half-width of
the Darwin plateau [9]. Our model contains only one in-
dependent parameter of deformation b ∼ ∂2(HU )/∂s0∂sh ,
which is proportional to the gradient of the lattice con-
stant. Here H is the vector of scattering, H = 4π sin θB/λ,
U is the displacement of nuclei under the deformation
force and s0 = (X/ cos θB + Z/ sin θB)/2, sh = (X/ cos θB −
Z/ sin θB)/2 are the coordinates directed along the incident
and diffracted beams correspondingly. RG(y) was calcu-
lated numerically and RBF(y), for b > 0, y < −1 and b > 0,
y > 1 + 2bT (where T = (T1/τ)×π × cot θB is the dimen-
sionless crystal thickness, T1 is the crystal thickness in µm
and τ ≈ 77 µm is the extinction length) obtained in analyt-
ical form using the geometrical optics approximation. Fig-
ure 3 shows the total-reflectivity functions, R(y) = RBF(y)+
RG(y), integrated over the detector slit X1, X2 (Fig. 2). The
discrete spectrum of RG(y) (see peaks 1, 2 and 3 in Fig. 3)
appears only due to the chosen geometry of the experi-
ment. The experimentally measurable BFRC (see position 7
in Fig. 1) is the convolution of the Darwin reflectivity func-
tion of the triple-bounce monochromator, R3

D(y), with the
total reflectivity, R(y):

I(∆) =
∫

R3
D(y)R(y +∆)dy. (1)

If the crystal is not deformed, RG(y) = 0 and R(y) = RBF(y).
If the crystal is lightly deformed, R(y) = RG(y) for the
position 6 (Fig. 1) and R(y) = RG(y) + RBF(y) for the
position 7.
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3 Results and discussion

The experimental rocking curves as well as the appropriate
theoretical simulations are given in Fig. 4. The experimental
BFRC obtained from the Si crystal without the Ni film (not
shown) is symmetric with respect to the exact Bragg angle,
θ −θB = 0; however a dramatic change in the BFRC has been
observed for the same crystal after depositing the 2000 Å Ni
film on one of the diffractive surfaces (see Fig. 4). The BFRCs
1 and 2 (Fig. 4), measured for two orientations of the crystal
(when the Ni-coated surface is set up as the BF (1) and then as
the FF (2)), are strongly asymmetrical, and in the cylindrical
deformation approximation can be considered as the mirror
reflections of each other. The theoretical BFRCs, calculated
by (1) for the parameters b ≈ 4 ×10−4 and b ≈ 3.5 ×10−4, fit
quite well to the corresponding experimental rocking curves.
The central peak, which corresponds to the strongest one-
bounce garland reflection, contributes significantly to the in-
tensity of the rocking curve and increases its asymmetry by
∼ 35%. The parameter b ≈ 4 ×10−4, determined from the
best fits of the experimental BFRC, corresponds to the rela-
tive deformation of the Si crystallographic cells in the vicinity
of diffractive surfaces, |∂uz/∂z| ≈ 1.6 ×10−6, and a radius of
bending, Rb ≈ (H/2b)(τ/π)2 ≈ 19 km, where τ is the extinc-

Fig. 4. The BFRCs measured after coating with the 2000 Å Ni film: 1 – the
Ni film is on the BF, as shown in Fig. 1; 2 – the Ni-coated surface is on
the FF. Solid and dashed lines are the simulation curves calculated for b =
4×10−4 and b = 3.5×10−4 correspondingly

tion length [3]. The Stoney formula [1, 2] converts the value
of Rb to the tension force, f , applied to the film as a result of
the substrate deformation:

f = ET 2/[6(1 − ν2)Rb] , (2)

where E ∼ 1011 N/m2 is the modulus of elasticity and ν
is the Poisson constant of Si. The calculated value of f is
∼ 90 N/m, which corresponds to deformation of the Ni crys-
tallographic cells |∂ux/∂x| ≈ 2 ×10−3. Thus, the 2000 Å Ni
film under study is strongly strained (expanded along the X
axis, Fig. 2). The described experiments clearly show that the
BFND, which is extremely sensitive to the ultra-small defor-
mation strain in the crystal, can be used for residual stress
measurements in thin films deposited on the diffractive sur-
face. The BFND works in principle similarly to the SSIOD
in situ technique, detecting the deformation of the substrate;
thus, it is capable of measuring residual stress not only in
crystalline (likewise the X-ray-diffraction technique) but also
in any amorphous, polymer, colloidal, mono- and multilayer
thin films deposited on the diffractive surface of Si single
crystals. The BFND, however, is not an in situ technique and
it allows the evaluation of the final product. We therefore ex-
pect its broad application, particularly in characterization of
neutron and X-ray optical devices and in the semiconductor
industry.
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